
Journal of Mathematical Sciences: Advances and Applications
Volume 1, Number 1, 2008, Pages 91-108

2000 Mathematics Subject Classification: Primary 18CXX; Secondary 68QXX.

Keywords and phrases: formal languages, semantics.

Received April 17, 2008

 2008 Scientific Advances Publishers

AN APPROACH TO THE DESCRIPTION OF FORMAL
LANGUAGES’ SEMANTICS

CRESCENZIO GALLO

Dipartimento di Scienze Economiche

Matematiche e Statistiche

Centro di Ricerca Interdipartimentale Bioagromed

Università di Foggia

Largo Papa Giovanni Paolo II

1-71100 Foggia, Italy

e-mail: c.gallo@unifg.it

Abstract

The creation of new programming languages, capable of fully deploying the

new technological innovations and operating environments, requires more and

more accurate and affordable analysis. In this study, a technique for the

generation of formal models for the specification of the semantics of

programming languages is presented. Tools are used newer than the semantics

of Kleene - such as the Scott’s theory of the categories and mathematical

theory of the computation, which are here outlined and motivated.

1. Introduction

In the last years the need of a theoretical structure, suitable for the

resolution of the issues arising from the formal analysis and the

specifications of the semantic aspects of high-level programming

languages, led researchers and analysts to focus on the development of a

CRESCENZIO GALLO92

new denotational semantics theory of programming languages which,

among the several approaches that the study of programming language

semantics has known over the time, is surely the most meaningful one.

Semantics, on the other hand, provides the meaning of programs
written in a particular language. This, in mathematical terms, means
considering semantics as a function with a syntactically correct program
as input and the description of the function computed by the program

itself as output. The main players in this theory are Scott and Strachey
who (together with their colleagues from the University of Oxford)
demonstrated that, despite the complexity and variety of modern
programming languages, it is possible - through a small number of
fundamental semantic constructs - to provide adequate conceptual basis
to determine short formal models about the meaning of programming
languages.

There are many advantages behind the analysis of the semantic
structure of programming languages. The main feature of a formal
definition of such languages undoubtably is the possibility, which comes
from this definition, to have a precise and complete standard reference
useful for users and those implementing a particular language, to avoid
omissions, contradictions and ambiguities typical of informal semantic
descriptions as the historical ones of Algol '60 [10]. Furthermore, in order
to determine rigorous and precise definitions demonstrations of semantic
properties of languages, greatly help using a structure of the semantic
concepts both general and language independent, even for standardizing
terminologies, clarify similarities and differences among languages.

The usefulness of a language descriptor goes well beyond the
possibility of discovering unwanted limitations, incompatibilities or
ambiguity. Indeed, a general notation for describing semantic could allow

the development of a real compiler generator, the same way the BNF
notation which led to the development of analytical generators. Many of
these objectives and potential of the semantic analysis of programming
languages have not been achieved, even though - on the other hand - the
continuing studies and subsequent progresses allow thinking that this
theory will play a decisive role in the development of computer science.

AN APPROACH TO THE DESCRIPTION OF FORMAL … 93

2. Basic Concepts

One of the achievable objectives through the theory of denotational
semantics is to demonstrate the possibility of defining the semantics of
programming languages using essentially the same approach of
mathematical logic. In the latter, in order to specify a semantic
interpretation of a formal language, maps from the syntactic constructs
of the object language in their abstract meanings are defined in an
appropriate mathematical model. For example, a class of numerals could
be interpreted by mapping every possible numeral in the number it
denotes. Similarly, if the object language is that of the predicate calculus,

every well-defined formula could be mapped into a truth value (true or
false) on a domain interpretation and meanings specified for constants,

functions and predicates. You can define the semantics of programming
languages using essentially the same approach: in fact, even if the
abstract meanings - proper for a programming language - are more
complex and less familiar than the truth values and the numbers treated
in mathematical logic, they are certainly not less mathematical.

To demonstrate the real possibility of such an approach - and to
establish some notations and methodological conventions - symbols of a
particular domain are used, which act as a metavariables on sets of
variables, expressions, commands and programs [8]. These sets are

ultimately syntactic categories, and the domain metavariables represent

arbitrary elements of the corresponding syntactic category. A category
can therefore be seen as an abstraction of “sets and functions”, where the
sets are called “C-objects” and represent abstract entities with no internal
structure.

In this analysis it is also necessary to introduce the concept of

morphism and isomorphism.

Definition 1 (Morphism). Given two structures ()TXS , and

(),,∗YQ with two different operations T and * respectively on the sets X

and Y and an application ,: YXf → this application is said morphism if,

denoting with a and b two elements of X for which ()af and ()bf are the

two corresponding elements of Y, we have () () (),bfafaTbf ∗= i.e., to the

CRESCENZIO GALLO94

result of the composition of two elements of X with the law T, in Y we

have the result of the composition of the two corresponding elements with
the law .∗

 Definition 2 (Isomorphism). A morphism YXf →: in a category

C is an isomorphism if there exists XY →:g such as Xidgf = and

Yidfg = or, in terms of commutative diagram:

Figure 1. An isomorphism.

Let us observe that such g, if exitst, is unique; in fact, if another

morphism h should exits with:

Xidhf = and Yidfh =

then

() () .hhidhgffhggidyg X =====

When this unique g exists, it is called “inverse of f” and is listed

with .1−f Two objects X and Y in a category C are isomorphic if there is

an isomorphism .: YXf → This is denoted by .1−≅ YX In order to

define a category C, let us suppose a collection of C-objects …,,, ZYX
and consider - for each ordered pair ()YX , of these items - the set

()YXC , of the functions from X to Y said C-morphisms of X in Y

(hereafter the term “map” will be used as a synonym for morphism). Let

us also suppose a composition function is available which associates to

each ordered pair of morphisms ()gf , of the form YXf →: and

AN APPROACH TO THE DESCRIPTION OF FORMAL … 95

ZYg →: a third morphism of the type ,: ZXgf → with the same

domain of f and codomain of g. You can then define a category C if the

above defined elements and objects are subject to the following three
axioms:

1. All possible sets of type ()YXC , are disjoint;

2. The composition function is associative;

3. For each object X there is an identity morphism XXidX →:

with the following property: for every morphism XYg →: is

ggoidX = and for every morphism YXf →: is .fidof X =

An example category is the set of subsets of N (natural numbers) with

all the partial functions of N in N.

With regard to the concept of isomorphism, note that it is practically

an equivalence relationship on the objects of a category C, for which it

does not necessarily always exist, i.e., it is to be verified that if - taken
two items in a category and a map between these objects - there is really
an opportunity to determine the outputs starting from entries to the map

and vice versa. This concept leads, as it were, to the duality law, which

helps in solving problems that arise in the design or verification of a
programming language. The implication of this law in the theory of
categories stems from the fact that, in the latter, every theorem or
deduction meanwhile is in effect because there is a dual theorem which is
a demonstration of the original one, obtained by reversing the meaning of
“arrows”. This property of the categories is one of the most interesting
advantages over other computational techniques, just because it
sometimes allows to determine constructs and semantic theorems
starting from terminal elements in order to produce semantic constructs
backward. We note, therefore, that stating the “isomorphism” of two
objects implies the existence, between them, of all the above said
conjectures.

As regards the meaning interpretive functions are defined of three
types, whose codomains should be constructed according to the meaning
of the corresponding syntactic class; the interpretive functions will be
used to determine a path from the syntactic constructs to their

CRESCENZIO GALLO96

mathematical meanings. These three types of functions are called partial
functions, total functions and multi functions and are defined as follows.

Definition 3 (Partial function). Given two sets X and Y, and

considered a subset A of X, a function f connecting every element of A to

only one element of Y is called partial function (or partially defined).

We will say that X is the domain of such a function, while A is the

definition domain, indicated with ().fDD

Definition 4 (Total function). If () ,XfDD = i.e., if the definition

domain of f coincides with the whole domain X, then f will be said a total
function.

The set of all partial functions of X into Y will be denoted with

().,YXPfn In other words, a function f is partial if, taken ()nxx ,,1 …

inputs, it is not defined for some ;x otherwise, if it is defined for each

input (),,,1 nxx … it is said a total function. The set of all total functions

of X into Y will be denoted with ().,YXTot For each set X, the identity

function of X is the total function XXidX →: such that () xxidX = for

every .Xx ∈

Definition 5 (Multifunction). A multifunction from X to Y is,

instead, a total function defined from X to all subsets of Y.

The set of all multifunctions from X to Y will be denoted with

().,YXMfn For every function ()YXpfnf ,∈ the function of is defined

in ().,YXfnM as:

()
(){ } ()

∅
∈

=
.otherwise,

,if, fDDxxf
xf o

Every program has therefore only one meaning given by the
interpretive function of the programs which delineates, for every possible
input, the output that will be produced at the end of the implementation.

The evaluation of an expression is more complex, because it requires
to take account of the state of a variable when the expression is
evaluated. An expression will have a unique value for each possible state;

AN APPROACH TO THE DESCRIPTION OF FORMAL … 97

each state represents the current value of a variable. You can then define

a function S, having domain V ar and codomain N, outlining each of these

states. Consequently, the interpretive function for the commands will be
the status of the transaction it specifies.

Definition 6 (Initial object). This is the case then to specify that an

object A in a category C is initial if, for each object X in C, there is exactly

one morphism from A to X. Such unique morphism is denoted with:

.:! XA →

In this respect there is the following:

Theorem 1. If A and B are both initial objects in a category C, then
BA →:! is an isomorphism.

Then, if C has an initial object, it is unique to a single isomorphism.

Definition 7 (Terminal object.) An object A in a category C is

terminal if for all CX ∈ there exists only one C-morphism from X to A,

denoted with [7]:

.:! AX →

Therefore, when a program of the type “read variable; execute
command; write result” is executed, then the implementation must
fulfill the following steps:

1. Establish an initial state in which all the variables are initialized;

2. An element of the definition domain is read and stored;

3. The body of the program runs and at the end it will be in a final
state;

4. The expression is evaluated with regard to the final state, and the
latter is the output.

Moreover, in case of iterative construction, the formal definition gives
accurate answers about when and how often the control function should
be evaluated, and about the conduct that this function must take if the
value is zero.

CRESCENZIO GALLO98

Note that the definition of categories does not require any special
constraints on the deployment of the language, as would have an
implementation-oriented model, because nothing is specified about how
functions should be computed and represented. Truly, for the definition
of programming languages’ semantics, you need only a simple procedure
to assess the correct mathematical function, and this is what more can be
done appropriately in a “standard” specification. The role of the only
operational models of languages is simply to formalize methods for the
implementation of the language, so that the accuracy of the latter can be
verified through a reference to the definition of the standard [9]. What
more can be done to help the verification of programs written in a
language taken into consideration, is to catalog the useful deduction rules
for the language constructs, as indicated by Hoare and Wirth [3].

In conclusion, the semantic analysis of a programming language is
based on its denotational definition, but including on the one hand formal
models of deployment, and on the other implementations of “surface”- so
to speak - properties of the language constructs, and more abstractly of
deeper theorems about the language in its entirety.

3. Expressions and Environments

Once we made the notion that the semantic interpretation of an

expression defines its value, and that dealing with expressions so-called

“pure” only the value is semantically important, it’s easy to understand

how it is possible that a sub-expression can be replaced by any other

expression having the same value, without this change having any effect

on the whole value. This linguistic property is defined referential
transparency and the languages or subsets of languages having this

feature are said applications [11].

We must however pay attention to the full concept of expression. It is

much deeper than most programming languages can let one think: in

them, the only forms of expression recognized as such are the atomic

constituents (constant identifiers, etc.) and combinations operator-

operand in the various syntactic working rules. The sub-applications, in

fact, also include other forms of expressions typical of mathematical

dissertations, such as:

AN APPROACH TO THE DESCRIPTION OF FORMAL … 99

;3in5let +=• xx

() ();5in3let fxxf +=•

()5f• where ()
()

−⋅
=

=
.otherwise,1

,0if,1
nfn

n
nf

These involve the concept of tying an identifier to a denotation; all

this corresponds to the various forms of local declaration in programming

languages, which consists in the declaration of local variables, definitions

of functions, formal parameter lists, iteration controlling the variables

and so on. The use of bounded construction leads in general to evaluating

an expression over an environment, which provides a value for each free

variable of the expression.

The concept of abstraction is important for the study of expressions.

In Church’s notation an abstract expression takes the form ,.EIλ where

I is an identifier (the bounded variable) and E is an expression (the body

usually containing I). Informally, the value of EI.λ (in a given

environment) is the function mapping an argument value, to which it is

applied, to the value of E relative to the extended environment linking I
to the argument. For example, in any environment 0.xλ denotes the

constant function of value 0, xx.λ denotes the identity function, 2.xxλ
denotes the square function, and yxx +λ . denotes the function whose

result is the sum of its argument and the value of y in that environment.

In order for the value of an abstract expression to be a function, it

may look like the operator part of a combination operator-operand. For

example, one can rewrite:

()5f where () 2xxf =

as

() ().5. 2xxλ

Although abstract expressions are not used in programming practice,

they play a key role in the semantic analysis of programming languages.

So far, as we have seen, it was not specified any particular base of

CRESCENZIO GALLO100

interpretation domain, but simply was assumed the existence of a values’

space expressible for E and an interpretation function .λ Now, in order

to determine the value of an expression which may contain identifiers

generally free, it is necessary to know the values to which these

identifiers are linked in that context. The set of indentifier associations

and their denotations in any context is called environment.

4. The Mathematical Foundations

There are some mathematical problems raised by the fact that the

semantic models make typically use of higher order functions, which

make the definition of the interpretive function of expressions not as

simple as we have seen previously. These functions are those whose

arguments are whether functions or other infinite objects. A concrete

example is given by the interpretive function of the expressions, which

has an environment function as an argument. Examples of computational

phenomena easily constructed using higher order functions are

procedures, whose parameters or results are procedural (the flow of

inputs and outputs of a not ending program as an operating system, or a

common program inserted in a loop) and reentrant data structures.

One of the reasons for which the higher order functions in the

semantic model create problems from the mathematical point of view is

the need for recursive definition [4]. The traditional approach to specify

the mathematical meaning of a recursively defined function (due to

Kleene and other scholars) is to demonstrate that there is a partial

function on a not numerable domain which is the only limit of a sequence

of partial functions, each of which is at least as well-defined as the

preceding items in the sequence. Of all the partial functions that could

satisfy the equation defined, this limit is the least defined and is also the

“natural” solution from the computational point of view. In other words,

the taken solution is the smallest of the “upper bounders”, meant as all

the functions that could satisfy the defined equation. These solutions are

also called fixed points of the recursively defined function. The less

defined fixed point is the only function that has this property and

therefore it is said minimum fixed point [20]. Kleene in one of his most

important results showed that each recursive program P has a single

AN APPROACH TO THE DESCRIPTION OF FORMAL … 101

minimun fixed point represented with .Pf The problem with this

approach comes at a time when it must be generalized to handle recursive

definitions of functionals whose arguments and results can be even

partial functions or functionals, or other infinite and recursively defined

objects.

Another problem in applying Kleene’s theories arises from the

possibility of self-application of higher order functions, such as procedures

applied to themselves of the type ().ff These are those self-activating

(i.e., dynamically reentrant). The problem, then, arises from the

indiscriminate use of self-applicable functions, which leads to paradoxical

contradictions of simple theories. A classical example is given by a

predicate which is true when its argument is a predicate that is false

when it is applied to itself: that is to say, if ()qp is true when ()qq is

false, then we would have that ()pp is true if ()pp is false, which is

absurd.

In essence defining semantics becomes more complicated if you must

interpret recursive functions, because defining the “meaning” of recursion

is not so obvious, as in the case of instructions as “if-then-else”. It is

useful, therefore, to better define the meaning of recursive function.

Definition 8 (Recursive function). Let X and Y be sets. A recursive

specification for a function ()YXnPff ,∈ is a function Γ such that the

value of ()xf (recursive specification) is obtained starting from x and

from a finite number of values of f by function:

() () ()()().,,0 nffxf …Γ=Γ

The problem arises: “what is the semantics of ?"Γ The goal is to

establish a function f such ();ff Γ= at this point f will b the semantics

relative to the recursive specification .Γ

A recursive specification defines therefore a function in terms of

itself. Sometimes, however, there are examples of recursive specifications

which show that the desired denotational semantics is not always entirely

clear. It can indeed happen that the recursive specification is seen as “an

equation”. You can then have situations where its solution is total and

CRESCENZIO GALLO102

unique, but it can also happen that its equational solution is not unique.

If the recursive specification is seen instead as an algorithm who calls

itself, then there can be more than one algorithmic solution, depending

on the calling strategies; besides, not always an algorithmic solution has

an equational one or, again, there are algorithms that do not terminate.

A mathematical theory of computation providing satisfactory

solutions to these problems has been developed by Scott using concepts

of mathematical logic and topology. The basis of Scott’s theory lies in the

fact that this characterizes classes of data models, called domains, and

classes of functions (including the high order ones) general enough to

allow natural models of computational phenomena (including recursion
and self-application) but also sufficiently restricted by a number of

axioms in order to avert all theoretical paradoxes and allow finite

approximations. These axioms are justified by showing that

mathematically consistent spaces and semantic models can be

constructed satisfying the same conditions. In other words, the main

feature of Scott’s domains is that a sequence of better and better

approximations, in a domain, must converge to a limit that best lends

itself within the same domain. In order, however, to “protect” these

limitations, the operations defined on the data model must be continuous
(this concept is much more general than that of the analysis just after the

application scope was defined).

The primitive domains must be formed by adding to finite or not

numerable sets as {true, false} or { }…… 2,1,0,1,-2,-, two special symbols

⊥ and , respectively, called “bottom” and “top”. The first represents the

completely undetermined information also called initial, while the later

represents the consistent or entirely determined information. The

primitive sets considered are:

{ }),numberswhole(,2,1,0,1,2, o…… −−=N

{ }),valuestruth(, ofalsetrueT =

{ } (),characters,'b','a' o…=H

AN APPROACH TO THE DESCRIPTION OF FORMAL … 103

where { }o… denotes the addition of the special symbols ⊥ and . In such

domains the notion of approximation is really simple: ⊥ “approximates”

all elements and all elements “approximate” , while all other pairs are

incomparable. Therefore, there are not trivial limits or recursive

definitions of elements in primitive domains, while the added domain

structure is needed just to meet the general demands of axioms and

provides a basis for the construction of more complex domains.

A large number of nonprimitive domains can be built through

appropriate transactions. In fact, if 1, DD and 2D are domains, then the

following are also domains:

,i. 21 DD ×

 ,ii. 21 DD +

 ,iii. 21 DD →

 ,iv. DDDDn ×××=

 .v. 210 …+++=∗ DDDD

Apart from the special treatment of ⊥ and , the elements of

21 DD × are ordered pairs whose first components are elements of 1D

and whose later components are in .2D One element of 21 DD +

corresponds to an element of 1D or .2D The domain 21 DD → consists of

continuous functions from 1D to .2D nD and ∗D are, respectively,

domains of tuples and of all finite fists of elements of .D Each of these

built domains also contains special elements ⊥ and and, in some

cases, even partial items with approximation relations of the constituent

domains, derived from them. For example, in the case of a domain made

of functions ,21 DD → f approximates g when ()xf approximates ()xg

for all .1Dx ∈ Several constructions can be combined into a domain

definition, Sintactically it is assumed that the operator of binary domains

“×” has the highest priority and “→” the lowest (and it associates at right

as above).

CRESCENZIO GALLO104

Returning to the concept of continuity, it can be said that constants

and identity functions on each domain are continuous, and that any

function defined through abstractions and combinations is continuous

only if its sub expressions are still continuous on the domain. It is

important to note, moreover, that on primitive domains the requirement

of continuity comes down to monotonity concept.

Definition 9 (Monotonity). We can thus say that a function f is

monotone when, if x “approximates” y, then ()xf “appromimates” ().yf

Each partial function f on a set can then be extended to total

continuous functions on the corresponding domain defining () =⊥ x f
(since⊥ approximates each element), () =f (since is approximated

by each item) and () =⊥xf if the partial function is undefined in .x

These extensions are designated “doubly strict” (doubly rigid). It is

possible, however, to have less strict extensions of functions when a

function is constant in comparison to one of its arguments: then you do

not need to have ⊥ as a result, even if that argument is undefined.

We can now deal with the above mentioned problem related to the

specification of the mathematical meaning of a recursive definition. This

problem consists in finding a fixed-point function DY that produces an

appropriate solution to equations of the form (),fFf = given the higher

order transformation .: DDF → It is clear that if D is a domain, then

there is an approximation relation on it and a starting element ;⊥ so,

using monotonity we have that ()⊥F approximates ()(),⊥FF and

inductively:

() ()() () …… ,,,,, ⊥⊥⊥⊥ iFFFF

is a sequence of better and better approximations which, due to

continuity, converge to a limit f such that ()⊥iF approximates

0≥∀if and () .ffF =

It was considered a special induction technique called fixed point
induction. This technique is a powerful tool that can be used to prove
assertions about the minimum fixed point of functions [6].

AN APPROACH TO THE DESCRIPTION OF FORMAL … 105

You can also show that for every domain there is a continuous

function of fixed point () DDDYD →→: such that, for each continuous

:: DDF →

1. () (())⊥= ∞→
i

iD FFY lim of successive approximations, is a

solution for the equation ();fFf =

2. each other solution of the equation is approximated by ().FYD

This result is a generalization of Kleene’s theorem of classical

recursion [4] in which the approximation relation allows both arguments

and results of recursively defined functions to be higher order partially

defined objects, instead of strictly defined or undefined. The arguments

can be generalized to give meaning to arbitrarily complex systems of

mutually recursive definitions. The problem of self-application is

resolved, too, by the Scott’s theory showing that both domains and

domain’s items can be recursively defined.

This brings our brief excursus on Scott’s theory of computation to an

end. It has been shown how this theory solves the problems raised by the

higher order interpretation and how you can then proceed on the analysis

of increasingly complex languages with the assurance that the resulting

semantic models are mathematically correct, as long as one only deals

with functions and domains defined using the bove-stated method. The

semantic idea introduced (environments, categories, sequences of

approximations) provides a conceptual structure for the formal semantic

specification of almost all configurations of high level programming

languages, and stands as conceptual basis to address issues such as

indeterminism, time compilers [23] and more complex control structures

as backtracking, coroutines and parallelism.

5. Conclusions

Nowadays, because of the continuing need to develop and design
formal tools able to exploit the great potential that the technology offers,
analysts and industry experts increasingly become aware that there may
not be an adequate progress in the field if there is not a solid conceptual
substrate consistent and not ambiguous. For this purpose the availability

CRESCENZIO GALLO106

of conceptual tools as Scott’s denotational semantics of programming
languages is important which, through all its interpretations and
abstractions, is an approach that can solve the most complex formal
aspects easily and naturally.

This work is intended to highlight the impact that Scott’s theory had

and may have on the description of the semantics of programming

languages. The denotational theory was examined, starting with the

ideas and basic concepts that led Scoot’ and Strachey to develop the

conceptual construct starting from abstract algebra, mathematical logic

and set theory.

It was used, to the purpose, an abstract concept of operation which,

starting from any object (initial or not) provides a certain result. It was

subsequently introduced a more general concept of set, apart the proper

one of the set theory, in which such an interpretation is not always

orthodox (in fact, the set theory almost always implies restrictions on the

types, prohibiting to consider operations whose domain consists of all

objects). It outlines as a useful approach to avoid the inconvenience that

may be experienced in dealing with more abstract concepts, rather

derived from the habit to think in set terms coming from the objective

difficulty to formulate a mathematical system based on a less restrictive

concept of operation.

This is why a formulation of a doctrine based on the theory of

categories was given, despite its fundamentals are not yet fully well

developed. It was intended to give greater emphasis to the Scott’s
formulation - in connection with his research on the semantics of

programming languages - on the possibility of giving a more

sophisticated interpretation of semantic models in which the terms are

intended as a succession of functions and none of them remains without

interpretation (the Scott’s general theory of models and his motivations

in terms of “computer science” are published in [13]; these models have

led to very interesting results, even though most of them has not yet been

published).

We also led ourselves to a different resolution of the problem of

recursion, based on a mathematical rather than computational

AN APPROACH TO THE DESCRIPTION OF FORMAL … 107

interpretation of recursive definitions, describing the essential idea of

considering the recursive definition as a correct mathematical equation by

replacing the concept of “is” (classic of a computational approach) with the

“=” one for the equivalence relations. This approach allows you to think of

recursively defined functions as fixed point functions of an higher type

compared to the fixed point functions used by Kleene, which first

provided an elegant treatment of recursion. Of great practical importance

is that this mathematical approach has also led to the discovery and use

of a powerful induction rule to prove the observations of certain

recursively defined functions.

This discussion, ultimately, although formulated in terms of a general

and unspecified programming language, wanted to express the basic idea

of the theory of denotational semantics of formal languages and indicate

its potential about solving the fundamental problem of any recursive

program: how to describe its precise meaning. It can hardly be called a

program, let alone the language that defines it may be so, until this issue

is not defined.

The objective of this approach is meant to prove, finally, the existence

of an appropriate balance between strict formulations, the breadth of

applications and conceptual simplicity. The essential purpose is to show

that, insisting on appropriate level of abstraction and using the correct

mathematical rules, it is possible to frame a method which can be

described as “the mathematical meaning of a language”.

References

[1] L. Allison, A practical Introduction to Denotational Semantics, Cambridge University
Press, Cambridge, 1986.

[2] F. S. de Boer, R. M. van Eijk, W. Van Der Hoek and J.-J. C. Meyer, Failure semantics
for the exchange of information in multi-agent systems, C. Palamidessi, ed., Eleventh
International Conference on Concurrency Theory (CONCUR2000), University Park,
PA, 2225 August, number 1877 in LNCS, pp. 217-228, Springer-Verlag, 2000.

[3] C. A. R. Hoare and N. Wirth, An axiomatic definition of the programming language
Pascal, Acta Inf. 2 (1973), 335-355.

[4] S. Kleene, Introduction to Metamathematics, Van Nostrand, New York, 1952.

[5] P. J. Landin, The mechanical evaluation of expression, Computer J. 6 (1964), 308-320.

CRESCENZIO GALLO108

[6] Z. Manna, Mathematical Theory of Computation, Mc Graw- Hill, 1974.

[7] E. G. Manes and M. A. Arbib, Algebraic Approaches to Program Semantics, Springer-
Verlag, 1986.

[8] A. Meyer and S. Cosmodakis, Semantical Paradigms, Proc. Third Annual Symposium
on Logic in computer Science, pp. 236-255, Computer Society Press, 1988.

[9] R. E. Milen, The formal semantics of computer languages and their implementations,
Ph.D. Th., Cambridge U. and Tech. Microfiche TCF-2 Oxford U. Computing Lab.,
Programming Research Group, 1974.

[10] P. Naur, Revised report on the algorithmic language Algol 60, Comm. ACM 6(1)
(1963), 1-17.

[11] W. V. Quine, Word and Object, Technology Press, Cambridge, Mass. and Wiley, New
York, 1960.

[12] J. C. Reynolds, Notes on a lattice-theoretic approach to the theory of computation,
Dep. Systems and Information Science, Syracuse U., Syracuse, New York, 1972.

[13] D. Scott, Outline of a mathematical theory of computation, Proc. 4th Princeton Conf.
on Information Sciences and System; anche Tech. Mon. PRG-2, Oxford U. Computing
Lab., Programming Research Group, 1970, pp. 169-176.

[14] D. Scott, The lattice of flow diagrams, in Engeler 1971; also Tech. Mon. PRG-3, Oxford
U. Computing Lab., Programming Research Group, 1971, pp. 311-366.

[15] D. Scott, Continuous lattices, Proc. 1971 Dalhousie Conf. Springer Verlag Lecture
Note Series, n. 274, Springer—Verlag, Berlin, Heidelberg, New York; also Tech. Mon.
PRG-7, Oxford U. Computing Lab., Programming Research Group, 1971.

[16] D. Scott, Mathematical concepts in programming language semantics, AFIPS Conf.
Proc., Vol. 40, 1972 SJCC, AFIPS Press, Montvale, N. J., 1972, pp. 225-234.

[17] D. Scott, Lattice theory, data types, and semantics, in Rustun, 1972, pp. 65-106.

[18] D. Scott, Lattice theoretic models for various type-free calculi, Proc. 4th International
Cong, for Logic, Methodology, and the Philosophy of Science, Bucharest, 1972.

[19] D. Scott, Data types as lattices, Unpublished lecture notes, Amsterdam, 1972.

[20] D. Scott, The Kleene Symposium, North-Hollan Publishing Company, 1980.

[21] D. Scott, Lambda Calculus: some Model, some Philosophy, J. Barwise, H. J. Heisler
and K. Kunem, eds., 1980.

[22] D. Scott and C. Strachey, Towards a mathematical semantics for computer
languages, Proc. Symp. On Computers and Automata, Polytechnic Institute of
Brooklyn; also Tech. Mon. PRG—6, Oxford U. Computing Lab., 1971, pp. 19-46.

[23] R. D. Tennent, Mathematical semantics and design of programming languages,
Ph.D. Dep. of Computer Sci., U. of Toronto, 1973.

g

